7 .doc

Unix
Linux Unix
CPU
Web Web
Web _— Web
Web
heap malloc
Web
Web
—_ Linux —_
kernel_thread 2426
Linux

CPU Scheduling

Linux

- 81 -

.doc

Linux

Linux

POSIX .4

Linux

CPU

ID PIDs

Unix
0 32,767

PID
Linux

Linux
PID

PID—

CPU

PID O

Unix

nonrealtime process ”

unrealtime process

CPU

CPU

CPU

CPU

PID1
get_pid

Linux

Linux

- 82 -

110

Linux

POSIX.1b

CPU

CPU

CPU

CPU

PID

PID

PID

PID

7 .doc

Reference Count ”

holder 1
-

holder 1

7.1

Linux

Unix root

root

- 83 -

root

7 .doc

root root
root

root
sudo

root Linux
POSIX

Linux

7.2

root

root

7 .doc

struct task_struct

pidhash

-

tarray _freelist

-

gl i =P
o e iy i)
i i :':""-" o

- et hEsh T mea.

— -l
il . A o
el g o

ar i Y

Unused entry
Bl Used entry
72 o
16325 struct task_struct
16350 struct task_struct next_task prev_task
16898 for_each_task
for_each_task
init_task init_task
ini_task
next_task
prev_task
16351 Linux
task_struct prev_run next_tun

-85 -

task

task

struct

run

7 .doc

queue next_task
prev_run next_run
init_task
add_to_runqueue 26276
del_from_runqueue 26287

move_first_runqueue 26318 move_last_runqueue 26300
kernel/sched.c
prev_run next_run kernel/fork.c
16370
process graph

next_task/prev_task

— struct task_struct
16370 16371

p_opptr p_pptr

p_pptr

p_cptr

p_ysptr

p_osptr

7.3

7.3 “ Me”

® REMOVE _LINKS 16876
® SET LINKS 16887
next_task/prev_task

- 86 -

.doc

16517 task struct task_struct

NR_TASKS 18320 512
32,768 PID
PID
task[i] PID i Linux
16519 tarray_freelist task
27966 27967 16522 16542
SMP tarray_freelist
taskdot lock 23475 10
16546 pidhash PID struct task_struct pidhash 27969
27970 16548 16580
hush pidhash
struct task_struct —pidhash_next 16374
pidhash_pprev 16375 pidhash PID
—pid_hashfn 16548 ——
0 32,767 PID “
do fork release
task 32,768 struct task_struct
PID
struct task_struct UP 964 SMP
1,212 —_— 1K task
32,768K 32M
8 —— 256M——
x86 4,000
task 512 4 2K
32M task struct task_struct
512K
struct task_struct state 16328
16188 TASK_RUNNING UP
TASK_RUNNING ——TASK_RUNNING
CPU CPU

- 87 -

.doc

16189

TASK_INTERRUPTIBLE

16190 TASK_UNINTERRUPTIBLE
16191 TASK_ZOMBIE struct
task_struct
16192 TASK_STOPPED
SIGSTOP SIGSTP SITTIN SIGTTOU
16193 TASK_SWAPPING
state
fork _ clone
Unix fork
init 4
fork —_— e
fork —_—
Linux fork ___clone
_clone ___clone
fork
___clone
___clone
fork
kernel_thread 2426
- kswapd
8
kernel_thread
kerne_thread do fork
do_fork
23953 do fork fork _ clone

23963

struct task_struct

- 88 -

.doc

23967 struct task_struct do fork
current
struct task_struct 10285
get_current 10277
23981 task find_empty _process 23598
o 16532 get_free taskslot
task
add_free taskslot 16523 task
task tarray_freelist
23999 PID
24045 clone flags
clone flags help function
24078
24079 hash_pid pidhash
24088 wake up_process 26356 TASK_RUNNING
struct task_struct o
PID hash ——
PID
PID get_pid 23611 PID
last_pid 23464 —_— PID
get_pid
get_pid o
—_— PID
Unix
task
get_pid o
PID

PID

- 8 -

7 .doc

get_pid
23613 next_safe
PID next_unsafe last_pid
PID
PID
get_pid next_safe——
get_pid next_safe
get_pid PID
23616 PID PID
23620 PID 15
last_pid 32,767 PID
gce
23621 last_pid 300 300
PID
PID
PID
PID 512 64
23622 last_pid PID next_safe
if
23624 last_pid next_safe
23633 last_pid 300
—_— PID
PID
PID
23651 get_pid PID PID
fork __clone
e Linux
init Init
exec
exec exec
fork exec C

P485 1

- 90 -

7 .doc

execl exec
exec 10079 10141 do_execve do_execve
] do_execve prepare_binprm
® _— C argc argv envp
°
do_execve
do_execve
10082 exec struct
linux_binprm 13786 —_— binprm *“ binary parameters
” do_execve bprm
do_execve bprm
—_— exec bprm
10087 do_execve
MAX_ARG_PAGES 13780 32
x86 4K
32¥4K=128K
cat*>/tmp/joined
—_— 128K xargs
MAX_ARG_PAGES
10091 —_—
do_execve
bprm do_execve
10096 bprm argc envc do_execve
count 9480 argv envp
do_execve argv envp do_execve
argc envc
count
do_execve
10115 copy_strings 9519 copy_strings
/ 8

- 01 -

7 .doc

10126
search_binary_handler

10134

prepare_binprm

9832 prepare_binprm do_execve bprm
9839
9858 setuid setuid
setuid /
setgid
9933 prepare_binprm 128
512 bprm buf
13787 struct linux_binprm
buf 128 9933 128 128
128
#define sizeof bprm->buf
#define
Sizeof

search_binary_handler

Linux
Java .class Java
—_— Linux
Linux
do_execve search_binary_handler 9996
10037 bprm
regs
13803
struct linux_binfmt
load_binary load_shlib
core_ dump search_binary_handler load_binary
search_binary_handler
10070 10037
10036

- 92 -

7 .doc
Linux
Li nuX 13 ” 13 ”
ELF ELF a.out
o a.out
Linux a.out ELF
13 m@i C ”
Java
.class Oxcafebabe Java
2.2 Intel Linux
PowerPC ~ SPARC
® aout fgbinfmt_sout.c —— Linux
a.out
® EFL fgbinfmt_elf.c e Linux
Linux Red Hat 5.2
ELF a.out
ELF Linux
® EMS86 fgbinfmt_em86.c —_— Alpha Intel Linux
Alpha
® Java fgbinfmt_java.c — Java
Java .class
.Class
Java
® Misc fgbinfmt_misc.c —_—
Java M86
° f/binfmt_script.c —_— shell Perl
#
Java ELF
9083 7656

- 03 -

7 .doc

Java
do_execve struct linux_binfmt
load_binary
load_binary
fg/binfmt_java.c
Web java format 9236 Java
Java applet_format 9254 Java
Applet Java
Java
fg/binfmt_java.c Java Java
“ misc”
do_load_java
9108 Java .class
9117 Oxcafebabe Java
9147
.class
9148 do_load_java
Java Java
9165 do_execve
do_load java search_binary_handler
ELF
struct task_struct o fork
struct task_struct
do_load_elf binary 8072 o
8273
load_java
9226 load_java .class

do_load java 9108
java_format

9236 java_format struct linux_binfmt 13803

load_java

init_java_binfmt

9262 init_java binfmt struct linux_binfmt
java_format applet_format Java
9355 init_java_binfmt Java

- 94 -

7 .doc

o -
) quick-and-dirty

Linux
Linux

10

struct task_struct
SCHED_OTHER SCHED_FIFO
SCHED_YIED
sched_yield 27757
SCHED_XXX
16196 SCHED_OTHER
16197 SCHED_FIFO

16196

CPU
SCHED_FIFO
POSIX.1b

kmod

CPU

CPU
“ quick-and-dirty”

if(!(current->policy & SCHED_FIFO)){ ... }

16198 SCHED_RR

SCHED_RR
16202 SCHED_YIELD

schedule 26686
SMP
policy policy
SCHED_RR
CPU— sched_yield
16202
Unix —_—
POSIX.1b FIFO
/0 CPU
rt_priority Linux
o CPU
POSIX.1b RR round-robin
SCHED_FIFO SCHED_RR
rt_priority SCHED_FIFO
CPU CPU

CPU

- 05 -

.doc

schedule

26689 prev next schedule schedule
prev CPU next
prev next ——schedule CPU
26706 6 “ "
26715 SCHED_RR “ " RR
—_— —_— RR
SCHED_FIFO
CPU
26720 TASK_RUNNING
schedule—— e
switch TASK_RUNNING

26735
26736

26757

26758

26767

26801

TASK_RUNNING
TASK_UNINTERUPTIBLE

p p
C “ goodness’ —— “ goodness’
CPU goodness goodness
goodness e Unix
“ niceness’ CPU
goodness
can_schedule SMP 26568
SMP CPU CPU
uUP 26573 —_— uP
CPU
0 goodness CPU
0 goodness C
0 schedule
—_— CPU
0 schedule
schedule goodness
0
goodness
goodness 0
schedule
“ quick-and-dirty”
schedule
switch_to

switch_to

- 96 -

.doc

schedule
schedule
schedule
next prev e
26809 schedule __schedule tail
idle
switch_to
switch_to
__switch_to 2638
switch_to
12945 switch_to ESP
switch_to EIP
12948 next->tss.elp——

__switch_to jmp

12949 __switch_to 2638
8
12955 tss task-state Intel
struct task_struct
ESP
goodness
goodness goodness
1,000 1,000
999 13 ”
0 41 SMP

SMP

uUpP

reacquire_kernel_lock

schedule

schedule
schedule

upP

context-switching
x86

switch_to 12939
__switch_to
CPU
TSS
struct thread_struct
x86 TSS—— EIP
26388 goodness
1,m0 “ ” 0
goodness
0 56 SMP
goodness 1,001

- 97 -

.doc

1,099

goodness
offset 100 1000 POSIX..1b
CPU
goodness CPU goodness
goodness Linux
goodness -1,000
idle counter idle
goodness
goodness Linux
schedule
goodness
26394 CPU 0 SCHED_YIELD
CPU CPU
26402 goodness
rt_priority
26411 goodness weight
counter CPU
CPU
26412 weight 0 goodness
26418 SMP —_—
26423
MMU
26425 priority goodness
26428 goodness
Linux 1 40 struct
task_struct priority struct task_struct
——rt_priority
PRIO_MIN 16094 -20 PRIO_MAX 16095 20 —
— ——sys setpriority
sys hice—
19 20 PRIO_MIN PRIO_MAX

sys hice

27562 —_—

- 08 -

7 .doc

sys setpriority —_—

Sys_setpriority

29213 sys setpriority ——which who niceval which who
who which ID ID
ID
29220 which
if (which>2| which>0)
if (which!=PRIO_PROCESS && wich !=PRIO_PGRP && which!=PRIO_USER)
if (which>PRIO_USER || which < PRIO_PGRP)
29270
29226 niceval —_— 20 19
1 40
Sys setpriority
niceval
DEF_PRIORITY
— 20—
if (niceva <-19)
priority = 40;
eseif (niceva >19)
priority = 1;
else
priority = 20 - niceval;
sys setpriority
DEF_PRIORITY
29241 proc_sd 29190
which who
sys getpriority Sys setpriority
for_each_task Sys setpriority sys getpriority 29274
sys setpriority

sys getpriority
update process_times

sys setpriority priority —_—
counter schedule goodness
counter 0 schedule
counter 0

- 99 -

7 .doc

UP update_process times 27382
SMP 10 update_process_times update_time 27412
6
—_— 100 CPU
counter
“ § —_— 6
0
update _process_times need_resched
20 21 21 20
0
10 210 —_— —_—
16466
110 CPU
x86 CPU
Linux
210 —_—
410 40
SCHED_FIFO CPU
sys setpriority sys nice
Linux struct task_struct
rt_priority 0 99 0
policy SCHED_OTHER
counter
priority
counter rt_priority
rt_priority POSIX.1b sched_setscheduler
sched_setparam root
POSIX sys sched setscheduler 27688
sys sched_setparam 27694 setschedular 27618

setscheduler

27618 pid O policy

- 100 -

7 .doc

param—— rt_priority
27630 setscheduler struct sched_param
16204 struct sched_param
sched_priority rt_priority
27639 find_process by pid 27608 pid O
PID
PID NULL
27645 policy
27657
27659 0 99 policy
SCHED_OTHER 0 policy
0 0
1 99
P492 1
27663
SCHED_FIFO CPU
setscheduer
27666
setscheduer
27672 setscheduler struct task_struct
policy rt_priority next_run
SCHED_FIFO CPU setscheduer
/
ID ID

CAP_SYS NICE 14104

- 101 -

7 .doc

CAP_SYS NICE

struct task_struct 16400
16401
® cap_effective—
® cap_permitted——
® cap_inheritable—
capable
16738
CAP_SETPCAP
fork
S fork
exec
exec exec
e compute _creds 9948 exec
superset
exec
exec
CAP_SYS_TIME CAP_SYSNICE _____ CAP_SYS MODULE — CAP_KILL
v Vv \ 4 \ 4

7.4

7.4

- 102 -

bit number
permitted
effective
inheritable

7 .doc

CAP_KILL
exec
CAP_SYS MODULE exec
CAP_SYS NICE exec
CAP_SYS TIME exec
CAP_SETPCAP
kernel/capability.c 22460
sys capget 22480 sys capset 22592
exec fdexec.c compute creds 9948
root root
root
CAP_SYS NICE
root
ID ID
Linux
13916
14153
CAP_TO_MASK 2
14154 include/linux/capability.h
sys_capget
22480 sys capget header dataptr header cap_user_header_t 13878
PID dataptr
cap_user_data_t 13884 e
Sys_capget

22492 sys capget header

EINVAL

EFAULT
22509 pid 0 PID

Sys _capget
22520 data
22530 dataptr

error —_— 0

- 103 -

7 .doc

sys_capset
22592 sys capset sys capget data dataptr
22600 Sys _capget Sys _capset
22613 pid 0
CAP_SETPCAP
sys _capset
pid pid
22616
22627 22509 sys_capget Sys _capset
Sys_capset -1
pid target current
22642
22650 Sys capset
22658
22666 sys capset pid
e pid -1 pid
cap_set_all 22561
cap_set pg 22539
22676 pid 0
ID ID
ID ID
ID ID ID ID
ID ID
ID
ID— druct task struct
uid euid gid egid 16396 16397 ID
[etc/passwd
Sys setpriority 29244 29245
Sys setpriority

— CAP_SYS NICE if

- 104 -

.doc

ID

ID

sys setrlimit 30057

16404

rlim

23974

30067

rlim_max

exit

23322

CPU

wait
PID

Sys setpriority ID
SYS CAP_NICE Sys setpriority
sys setuid sys setgid 29578 29445
ID ID ID setuid setgid
CPU
struct rusage 16068
struct task_struct e
RLIMIT_MPROC
fork
27333 sys getrlimit 30046
Sys getrusage 30143
16089 struct rlimit rlin_cur
CAP_SYS RESOURCE
9
exit sys exit
C main exit

struct task_struct
wait

- 105 -

.doc

PID —

PID wait struct
task_struct PID
zombies sys exit
sys exit do_exit
do_exit do_exit
6
23267 do_exit NORET_TYPE
NORET_TYPE 14955 e e
__volatile__ gcc
gce
NORET_TYPE
23285 SystemV IPC 9
23286 8
23290
23291
23292 6
23294 TASK_ZOMBIE
23296 exit_notify 23198
23304 schedule 26686 CPU schedule
CPU
__exit_files
__exit_files 23109
__clone
23115 __exit_files
tsk->files->count atomic_dec_and_test
atomic_dec and_test 10249
0 tsk struct files struct
0
23116
close files 23081
23118 fd files

- 106 -

NR_OPEN 15067 1,024

7 .doc

if —fd
__exit_files
23122 __exit_files files
_exit_xxx
wait
exec wait exec wait
wait wait
sys wait4 23327 wait
wait4 C libc wait
sys wait4 Alpha
sys waitpid sys waitpid sys wait4
sys waitd—— sys waitd——
wait
Sys_wait4
23327 sys wait4
pid PID 0
stat_addr options
sys wait4 ru
23335 sys wait4
23342
struct task_struct
p_cptr p_osptr
sys wait4
23343 pid PID -1 pid
pid 23343 23346 23349
23376 —_—
29772 sys times
23382
23387 retval PID retval

- 107 -

7 .doc

23388
REMOVE_LINKS 16876
SET_LINKS 16887 SIGCHLD
notify_parent
28548 6
23396 —_— e release 22951 struct
task_struct sys wait4 release
23400 sys wait4
23418 retval PID
23401 default 23342 for
default
23406 for e
pid
23408 flag 0 for 23358
pid —_—
WNOHANG e
e 0
23411 SIGCHLD——
SIGCHLD
23413
TASK_INTERRUPTIBLE schedule CPU
CPU
23339 repeat TASK_INTERRUPTIBLE
e SIGCHLD
23417 flag O pid
e sys wait4 ECHILD
release
22951 release struct task_struct
22953 e
22969 UP free uid 23532 struct
user_struct fork
22970 tarray_freelist
22974 PID REMOVE_LINKS 16876
task

NULL

- 108 -

7 .doc

22979

sys wait4

22982 struct task_struct free task_struct
2391

- 109 -

	第7章 进程和线程
	调度和时间片
	实时进程
	优先级
	进程ID（PIDs）
	引用计数
	权能
	进程在内核中是如何表示的
	进程状态
	进程来源：fork和_ _clone
	
	do_fork

	PID的分配
	
	get_pid

	运行新程序
	
	do_execve
	prepare_binprm
	search_binary_handler

	可执行格式
	一个例子：Java二进制处理程序
	
	do_load_java
	load_java
	java_format
	init_java_binfmt

	调度：了解它们是如何运行的！
	调度函数和调度策略
	
	schedule
	switch_to

	计算goodness值
	
	goodness

	非实时优先级
	
	sys_setpriority
	update_process_times

	实时优先级
	
	setscheduler

	遵守限制
	权能
	sys_capget
	sys_capset

	用户ID和组ID
	资源限制

	所有美好的事物都会结束——这就是它们如何处理的
	exit
	__exit_files

	wait
	sys_wait4
	release

